DocumentCode :
3602893
Title :
Simulation of L 1_{0} FePt Columnar Microstructure Using Phase Field Model
Author :
Liu, L.W. ; Ohsasa, K. ; Koyama, T. ; Liang, L.Y. ; Zhang, L.R. ; Ishio, S.
Author_Institution :
Venture Bus. Lab., Akita Univ., Akita, Japan
Volume :
51
Issue :
11
fYear :
2015
Firstpage :
1
Lastpage :
3
Abstract :
The morphological evolutions of FePt-X (segregant) thin films were studied by employing a 3-D phase field model. Numerical simulation results show that in the absence of substrate constraint related with elastic energy, the morphology of the FePt-X thin films significantly depends on the interfacial energy, film thickness, and anisotropic atomic mobility. The large interfacial energy between FePt and X induces the FePt grains to form the nonmultilayers microstructure but it degrades the L10 ordering of FePt. The formation of columnar or the bilayer microstructure of FePt largely depends on a critical film thickness. Using the segregant with anisotropic atomic mobility to prepare the columnar FePt grains with high aspect ratio is advantageous in the FePt-X thin films.
Keywords :
crystal microstructure; iron alloys; metallic thin films; platinum alloys; surface energy; 3D phase field model; FePt; L10 FePt columnar microstructure; anisotropic atomic mobility; bilayer microstructure; elastic energy; interfacial energy; morphological evolution; morphological property; nonmultilayer microstructure; numerical simulation; phase field model; thin films; Aging; Films; Heat-assisted magnetic recording; Microstructure; Morphology; Shape; Solid modeling; Anisotropy mobility; FePt; anisotropy mobility; columnar microstructure; phase field; thin film;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2015.2442590
Filename :
7119596
Link To Document :
بازگشت