• DocumentCode
    3602893
  • Title

    Simulation of L 1_{0} FePt Columnar Microstructure Using Phase Field Model

  • Author

    Liu, L.W. ; Ohsasa, K. ; Koyama, T. ; Liang, L.Y. ; Zhang, L.R. ; Ishio, S.

  • Author_Institution
    Venture Bus. Lab., Akita Univ., Akita, Japan
  • Volume
    51
  • Issue
    11
  • fYear
    2015
  • Firstpage
    1
  • Lastpage
    3
  • Abstract
    The morphological evolutions of FePt-X (segregant) thin films were studied by employing a 3-D phase field model. Numerical simulation results show that in the absence of substrate constraint related with elastic energy, the morphology of the FePt-X thin films significantly depends on the interfacial energy, film thickness, and anisotropic atomic mobility. The large interfacial energy between FePt and X induces the FePt grains to form the nonmultilayers microstructure but it degrades the L10 ordering of FePt. The formation of columnar or the bilayer microstructure of FePt largely depends on a critical film thickness. Using the segregant with anisotropic atomic mobility to prepare the columnar FePt grains with high aspect ratio is advantageous in the FePt-X thin films.
  • Keywords
    crystal microstructure; iron alloys; metallic thin films; platinum alloys; surface energy; 3D phase field model; FePt; L10 FePt columnar microstructure; anisotropic atomic mobility; bilayer microstructure; elastic energy; interfacial energy; morphological evolution; morphological property; nonmultilayer microstructure; numerical simulation; phase field model; thin films; Aging; Films; Heat-assisted magnetic recording; Microstructure; Morphology; Shape; Solid modeling; Anisotropy mobility; FePt; anisotropy mobility; columnar microstructure; phase field; thin film;
  • fLanguage
    English
  • Journal_Title
    Magnetics, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9464
  • Type

    jour

  • DOI
    10.1109/TMAG.2015.2442590
  • Filename
    7119596