• DocumentCode
    3603602
  • Title

    Bayesian Tracking and Parameter Learning for Non-Linear Multiple Target Tracking Models

  • Author

    Lan Jiang ; Singh, Sumeetpal S. ; Yildirim, Sinan

  • Author_Institution
    Dept. of Eng., Univ. of Cambridge, Cambridge, UK
  • Volume
    63
  • Issue
    21
  • fYear
    2015
  • Firstpage
    5733
  • Lastpage
    5745
  • Abstract
    This paper proposes a new Bayesian tracking and parameter learning algorithm for non-linear and non-Gaussian multiple target tracking (MTT) models. A Markov chain Monte Carlo (MCMC) algorithm is designed to sample from the posterior distribution of the target states, birth and death times, and association of observations to targets, which constitutes the solution to the tracking problem, as well as the model parameters. The numerical section presents performance comparisons with several competing techniques and demonstrates significant performance improvements in all cases.
  • Keywords
    Bayes methods; Markov processes; Monte Carlo methods; learning (artificial intelligence); statistical distributions; target tracking; Bayesian tracking algorithm; MCMC algorithm; Markov chain Monte Carlo algorithm; birth times; death times; nonGaussian multiple target tracking model; nonlinear multiple target tracking model; numerical section; observation association; parameter learning algorithm; posterior target state distribution; Bayes methods; Hidden Markov models; Numerical models; Signal processing algorithms; Target tracking; Yttrium; Multi-target tracking; Particle Gibbs; Particle Markov Chain Monte Carlo; model learning; reversible jump MCMC; state estimation;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2015.2454474
  • Filename
    7153565