• DocumentCode
    3604556
  • Title

    Derivation of the PHD and CPHD Filters Based on Direct Kullback–Leibler Divergence Minimization

  • Author

    Garcia-Fernandez, Angel F. ; Ba-Ngu Vo

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Curtin Univ., Perth, WA, Australia
  • Volume
    63
  • Issue
    21
  • fYear
    2015
  • Firstpage
    5812
  • Lastpage
    5820
  • Abstract
    In this paper, we provide novel derivations of the probability hypothesis density (PHD) and cardinalised PHD (CPHD) filters without using probability generating functionals or functional derivatives. We show that both the PHD and CPHD filters fit in the context of assumed density filtering and implicitly perform Kullback-Leibler divergence (KLD) minimizations after the prediction and update steps. We perform the KLD minimizations directly on the multitarget prediction and posterior densities.
  • Keywords
    filtering theory; minimisation; probability; CPHD filters; KLD minimizations; cardinalised PHD filters; density filtering; direct Kullback-Leibler divergence minimization; probability hypothesis density; Approximation methods; Bayes methods; Current measurement; Mathematical model; Minimization; Radar tracking; Target tracking; CPHD filter; Kullback-Leibler divergence; PHD filter; Random finite sets; multiple target tracking;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2015.2468677
  • Filename
    7202905