DocumentCode :
3604824
Title :
A Scalable and Flexible Repository for Big Sensor Data
Author :
Dongeun Lee ; Jaesik Choi ; Heonshik Shin
Author_Institution :
Sch. of Electr. & Comput. Eng., Ulsan Nat. Inst. of Sci. & Technol., Ulsan, South Korea
Volume :
15
Issue :
12
fYear :
2015
Firstpage :
7284
Lastpage :
7294
Abstract :
Data generation rates of sensors are rapidly increasing, reaching a limit such that storage expansion cannot keep up with the data growth. We propose a new big data archiving scheme that handles the huge volume of sensor data with an optimized lossy coding. Our scheme leverages spatial and temporal correlations inherent in typical sensor data. The spatio-temporal correlations, observed in quality adjustable sensor data, enable us to compress a massive amount of sensor data without compromising distinctive attributes in sensor signals. Sensor data fidelity can also be decreased gradually. In order to maximize storage efficiency, we derive an optimal storage configuration for this data aging scenario. Experiments show outstanding compression ratios of our scheme and the optimality of storage configuration that minimizes system-wide distortion of sensor data under a given storage space.
Keywords :
ageing; information retrieval systems; records management; sensors; big data archiving scheme; big sensor data; data aging scenario; data generation; lossy coding optimisation; optimal storage configuration; repository; spatiotemporal correlations; system-wide distortion minimization; Analytical models; Data models; Distortion; Encoding; Quantization (signal); Sensor phenomena and characterization; Big data archiving; Quality-adjustable sensor data; big data archiving; data compression; quality-adjustable sensor data; storage management; wireless sensor network;
fLanguage :
English
Journal_Title :
Sensors Journal, IEEE
Publisher :
ieee
ISSN :
1530-437X
Type :
jour
DOI :
10.1109/JSEN.2015.2471802
Filename :
7217788
Link To Document :
بازگشت