DocumentCode :
3607108
Title :
Hold-In, Pull-In, and Lock-In Ranges of PLL Circuits: Rigorous Mathematical Definitions and Limitations of Classical Theory
Author :
Leonov, Gennady A. ; Kuznetsov, Nikolay V. ; Yuldashev, Marat V. ; Yuldashev, Renat V.
Author_Institution :
St.-Petersburg State Univ., St. Petersburg, Russia
Volume :
62
Issue :
10
fYear :
2015
Firstpage :
2454
Lastpage :
2464
Abstract :
The terms hold-in, pull-in (capture), and lock-in ranges are widely used by engineers for the concepts of frequency deviation ranges within which PLL-based circuits can achieve lock under various additional conditions. Usually only non-strict definitions are given for these concepts in engineering literature. After many years of their usage, F. Gardner in the 2nd edition of his well-known work, Phaselock Techniques, wrote “There is no natural way to define exactly any unique lock-in frequency” and “despite its vague reality, lock-in range is a useful concept.” Recently these observations have led to the following advice given in a handbook on synchronization and communications: “We recommend that you check these definitions carefully before using them.” In this survey an attempt is made to discuss and fill some of the gaps identified between mathematical control theory, the theory of dynamical systems and the engineering practice of phase-locked loops. It is shown that, from a mathematical point of view, in some cases the hold-in and pull-in “ranges” may not be the intervals of values but a union of intervals and thus their widely used definitions require clarification. Rigorous mathematical definitions for the hold-in, pull-in, and lock-in ranges are given. An effective solution for the problem on the unique definition of the lock-in frequency, posed by Gardner, is suggested.
Keywords :
phase locked loops; PLL circuits; classical theory limitation; dynamical system theory; hold-in range; lock-in frequency; lock-in range; mathematical control theory; phase locked loops; pull-in range; rigorous mathematical definitions; Circuit stability; Mathematical model; Phase locked loops; Stability analysis; Trajectory; Transfer functions; Voltage-controlled oscillators; Analog PLL; Gardner’s paradox on lock-in range; Gardner’s problem on unique lock-in frequency; capture range; cycle slipping; definition; global stability; high-order filter; hold-in range; local stability; lock-in range; nonlinear analysis; phase-locked loop; pull-in range; stability in the large;
fLanguage :
English
Journal_Title :
Circuits and Systems I: Regular Papers, IEEE Transactions on
Publisher :
ieee
ISSN :
1549-8328
Type :
jour
DOI :
10.1109/TCSI.2015.2476295
Filename :
7277189
Link To Document :
بازگشت