• DocumentCode
    3608089
  • Title

    High accuracy android malware detection using ensemble learning

  • Author

    Yerima, Suleiman Y. ; Sezer, Sakir ; Muttik, Igor

  • Author_Institution
    Centre for Secure Inf. Technol., Queen´s Univ., Belfast, UK
  • Volume
    9
  • Issue
    6
  • fYear
    2015
  • Firstpage
    313
  • Lastpage
    320
  • Abstract
    With over 50 billion downloads and more than 1.3 million apps in Google´s official market, Android has continued to gain popularity among smartphone users worldwide. At the same time there has been a rise in malware targeting the platform, with more recent strains employing highly sophisticated detection avoidance techniques. As traditional signature-based methods become less potent in detecting unknown malware, alternatives are needed for timely zero-day discovery. Thus, this study proposes an approach that utilises ensemble learning for Android malware detection. It combines advantages of static analysis with the efficiency and performance of ensemble machine learning to improve Android malware detection accuracy. The machine learning models are built using a large repository of malware samples and benign apps from a leading antivirus vendor. Experimental results and analysis presented shows that the proposed method which uses a large feature space to leverage the power of ensemble learning is capable of 97.3-99% detection accuracy with very low false positive rates.
  • Keywords
    Android (operating system); invasive software; learning (artificial intelligence); ensemble machine learning; high accuracy Android malware detection; static analysis;
  • fLanguage
    English
  • Journal_Title
    Information Security, IET
  • Publisher
    iet
  • ISSN
    1751-8709
  • Type

    jour

  • DOI
    10.1049/iet-ifs.2014.0099
  • Filename
    7295678