• DocumentCode
    3608263
  • Title

    Probabilistic Class Histogram Equalization Based on Posterior Mean Estimation for Robust Speech Recognition

  • Author

    Youngjoo Suh ; Hoirin Kim

  • Author_Institution
    Sch. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea
  • Volume
    22
  • Issue
    12
  • fYear
    2015
  • Firstpage
    2421
  • Lastpage
    2424
  • Abstract
    In this letter, we propose a new probabilistic class histogram equalization technique for noise robust speech recognition. To cope with the sparse data problem which is common in the case of short test data, the proposed histogram equalization technique employs the posterior mean estimator, a kind of the Bayesian estimator, for test CDF. Experiments on the Aurora-4 framework showed that the proposed method produces performance improvement over the conventional maximum likelihood estimation-based approach.
  • Keywords
    maximum likelihood estimation; probability; speech recognition; Aurora-4 framework; Bayesian estimator; histogram equalization technique; maximum likelihood estimation; noise robust speech recognition; posterior mean estimation; probabilistic class histogram equalization; sparse data problem; Automatic speech recognition; Bayes methods; Histograms; Maximum likelihood estimation; Robustness; CDF estimation; feature normalization; histogram equalization; posterior mean; robust speech recognition;
  • fLanguage
    English
  • Journal_Title
    Signal Processing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1070-9908
  • Type

    jour

  • DOI
    10.1109/LSP.2015.2490202
  • Filename
    7297843