• DocumentCode
    3609484
  • Title

    Uniform Surface Integral Equation Formulation for Mixed Impedance Boundary Conditions

  • Author

    Yla-Oijala, Pasi ; Kiminki, Sami P. ; Wallen, Henrik ; Sihvola, Ari

  • Author_Institution
    Dept. of Radio Sci. & Eng., Aalto Univ., Espoo, Finland
  • Volume
    63
  • Issue
    12
  • fYear
    2015
  • Firstpage
    5718
  • Lastpage
    5726
  • Abstract
    A numerical approach based on the surface integral equation (SIE) method is developed for the analysis of time-harmonic electromagnetic scattering by impenetrable objects equipped with mixed impedance boundary conditions (MIBCs). MIBC is an axially anisotropic generalization of the conventional isotropic (Leontovich) impedance boundary condition. The developed SIE formulation utilizes surface Helmholtz decomposition, the self-dual formulation of Yan and Jin, and loop and star RWG functions. A combined field formulation is applied to avoid internal resonances.
  • Keywords
    Helmholtz equations; anisotropic media; electric field integral equations; electromagnetic wave scattering; magnetic field integral equations; MIBC; SIE method; axially anisotropic generalization; impenetrable object; isotropic impedance boundary condition; mixed impedance boundary conditions; numerical approach; resonance; self-dual formulation; star RWG functions; surface Helmholtz decomposition; time-harmonic electromagnetic scattering analysis; uniform surface integral equation; Boundary conditions; Impedance; Integral equations; Mathematical model; Scattering; Surface impedance; Testing; Electromagnetic (EM)??scattering; Electromagnetic scattering; impedance boundary condition; impenetrable object; method of moments; method of moments,; surface Helmholtz decomposition; surface integral equation; surface integral equation (SIE);
  • fLanguage
    English
  • Journal_Title
    Antennas and Propagation, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-926X
  • Type

    jour

  • DOI
    10.1109/TAP.2015.2496100
  • Filename
    7312425