DocumentCode :
3611215
Title :
Key-layered normal distributions transform for point cloud registration
Author :
Hyunki Hong ; Lee, B.H.
Author_Institution :
Dept. of Electr. & Comput. Eng., Seoul Nat. Univ., Seoul, South Korea
Volume :
51
Issue :
24
fYear :
2015
Firstpage :
1986
Lastpage :
1988
Abstract :
A new scan matching algorithm is proposed using the concept of key layers. In the conventional multi-layered normal distributions transform (MLNDT), the number of layers and iterations per layer are fixed and mismatches in point clouds occur due to the limited number of optimising iterations per layer. Moreover, the accuracy of registration is low and the number of layers is heuristically determined in MLNDT. The proposed key-layered normal distributions transform (KLNDT) works well with both enhanced success rate and accuracy. It is also possible for KLNDT to register in higher layers than the traditional MLNDT.
Keywords :
computational geometry; normal distribution; rendering (computer graphics); transforms; KLNDT; MLNDT; accuracy enhancement; key-layered normal distribution transform; multilayered normal distribution transform; point cloud registration; registration accuracy; scan matching algorithm; success rate enhancement;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el.2015.2323
Filename :
7335721
Link To Document :
بازگشت