DocumentCode
3612801
Title
Architecting for Causal Intelligence at Nanoscale
Author
Khasanvis, Santosh ; Mingyu Li ; Rahman, Mostafizur ; Biswas, Ayan K. ; Salehi-Fashami, Mohammad ; Atulasimha, Jayasimha ; Bandyopadhyay, Supriyo ; Moritz, Csaba Andras
Volume
48
Issue
12
fYear
2015
Firstpage
54
Lastpage
64
Abstract
Conventional Von Neumann microprocessors are inefficient for supporting machine intelligence due to layers of abstraction, limiting the feasibility of machine-learning frameworks in critical applications. A new approach for architecting intelligent systems, using physical equivalence and leveraging emerging nanotechnology, can pave the way to machine intelligence everywhere.
Keywords
learning (artificial intelligence); microcomputers; nanotechnology; intelligent system; machine intelligence; machine-learning framework; nanotechnology; von Neumann microprocessor; Bayes methods; Cognition; Computer architecture; Machine intelligence; Nanoscale devices; Probabilistic logic; advanced technologies; emerging technologies; machine learning; magneto-electric circuits; mixed-signal computation; non-Von Neumann architectures; probabilistic inference; rebooting computing;
fLanguage
English
Journal_Title
Computer
Publisher
ieee
ISSN
0018-9162
Type
jour
DOI
10.1109/MC.2015.367
Filename
7368025
Link To Document