DocumentCode :
3612999
Title :
Recovery probability analysis for sparse signals via OMP
Author :
Mingbo Niu ; Salari, Soheil ; Chan, Francois ; Rajan, Sreeraman
Author_Institution :
Okanagan Coll., Kelowna, BC, Canada
Volume :
51
Issue :
4
fYear :
2015
Firstpage :
3475
Lastpage :
3479
Abstract :
It is known that use of a random measurement (sensing) matrix usually results in good recovery performance via orthogonal matching pursuit. This paper provides the probability of ensuring the recovery of sparse signals using orthogonal matching pursuit for the case where all entries of the measurement matrix are independently selected from a Gaussian distribution. The analysis relies on the mutual-coherence property of the sensing matrix.
Keywords :
Gaussian distribution; iterative methods; matrix algebra; probability; sensors; signal processing; time-frequency analysis; Gaussian distribution; OMP; mutual-coherence property; orthogonal matching pursuit; random measurement sensing matrix; recovery probability analysis; sparse signal; Covariance matrices; Gaussian distribution; MIMO radar; Matching pursuit algorithms; Sensors; Sparse matrices;
fLanguage :
English
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9251
Type :
jour
DOI :
10.1109/TAES.2015.150456
Filename :
7376270
Link To Document :
بازگشت