DocumentCode :
3613000
Title :
Trigonometric moment matching and minimization of the Kullback-Leibler divergence
Author :
Kurz, Gerhard ; Hanebeck, Uwe D.
Volume :
51
Issue :
4
fYear :
2015
Firstpage :
3480
Lastpage :
3484
Abstract :
We show an important property of the von Mises distribution on the unit circle. If we approximate an arbitrary circular distribution using a von Mises distribution, the result obtained by trigonometric moment matching also minimizes the Kullback-Leibler divergence (Theorem 1). This result is a justification for circular filtering algorithms based on trigonometric moment matching as the loss of information is minimized. Furthermore, we show that Theorem 1 does not hold for the wrapped normal distribution.
Keywords :
filtering theory; minimisation; probability; Kullback-Leibler divergence; arbitrary circular distribution; circular filtering algorithm; minimization; probability distribution; trigonometric moment matching; von Mises distribution; wrapped normal distribution; Approximation methods; Bayes methods; Gaussian distribution; Robot sensing systems;
fLanguage :
English
Journal_Title :
Aerospace and Electronic Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9251
Type :
jour
DOI :
10.1109/TAES.2015.150406
Filename :
7376271
Link To Document :
بازگشت