DocumentCode :
3613115
Title :
Bayesian Estimation for the Birnbaum-Saunders distribution in the presence of censored data
Author :
Moala, Fernando Antonio ; Achcar, Jorge Alberto ; Gimenez, Robson
Author_Institution :
Fac. de Cienc. e Tecnol., UNESP, Presidente Prudente, Brazil
Volume :
13
Issue :
10
fYear :
2015
Firstpage :
3187
Lastpage :
3192
Abstract :
The use of Birnbaum-Saunders distribution can be a good alternative for analyzing data lifetime of equipment. In this work two different prior distributions are used in the estimation of the parameters of the Birnbaum-Saunders distribution under the Bayesian approach and with the presence of type I and II censored data. Assuming a priori dependence between parameters, an alternative prior distribution based on copula functions is proposed. Thus, a study to determine whether the priors lead to the same inference a posteriori is of great practical interest. Two examples are presented to illustrate the proposed methodology and investigated the performance of prior distributions. The Bayesian analysis is performed based on Monte Carlo Markov Chain (MCMC) to generate samples from the posterior distribution.
Keywords :
Bayes methods; Markov processes; Monte Carlo methods; statistical distributions; Bayesian estimation; Birnbaum-Saunders distribution; MCMC; Monte Carlo Markov Chain; copula function; posterior distribution; Bayes methods; Censorship; Estimation; Integrated circuits; Markov processes; Monte Carlo methods; Software; Birnbaum-Saunders Distribution; MCMC; Type I censoring; copula; type II;
fLanguage :
English
Journal_Title :
Latin America Transactions, IEEE (Revista IEEE America Latina)
Publisher :
ieee
ISSN :
1548-0992
Type :
jour
DOI :
10.1109/TLA.2015.7387220
Filename :
7387220
Link To Document :
بازگشت