DocumentCode :
3621044
Title :
New prospects for time-of-flight PET with LSO scintillators
Author :
M. Moszynski;M. Kapusta;A. Nassalski;T. Szczesniak;D. Wolski;L. Eriksson;C.L. Melcher
Author_Institution :
Soltan Inst. for Nucl. Studies, Warsaw, Poland
Volume :
5
fYear :
2005
fDate :
6/27/1905 12:00:00 AM
Firstpage :
2854
Lastpage :
2858
Abstract :
The growing interest in time-of-flight PET triggered the study of the time resolution obtainable with a 4times4times20 mm3 LSO crystal coupled directly to the center of a 52 mm in diameter Photonis XP20D0 photomultiplier as well as the time resolution obtainable with the use of an 11 mm thick lucite light diffuser that simulates the conditions in typical PET block detectors. The LSO crystal directly coupled to the PMT yielded a time resolution of 166plusmn5 ps, while in the case of light readout with the use of the light diffuser it degraded to 196plusmn5 ps and 277plusmn6 ps in the center and at the edge of the PMT, respectively. The light diffuser was coated on the sides with black tape to absorb light and to approximate in this way the realistic performance of a future block detector. Similar time resolution was obtained by coupling the LSO crystal either to the Photonis XP20D0 PMT or to a very fast 25 mm diameter Hamamatsu R5320 PMT. These results illustrate the advantages of the very low time jitter of the Hamamatsu PMT on one side, and high quantum efficiency and a screening grid at the anode of the Photonis PMT, on the other. This study strongly suggests that time-of-flight PET based on LSO crystals is a realistic proposition for the further development
Keywords :
"Positron emission tomography","Photonic crystals","Timing","Photomultipliers","Time measurement","Optical coupling","Degradation","Jitter","Anodes","Molecular imaging"
Publisher :
ieee
Conference_Titel :
Nuclear Science Symposium Conference Record, 2005 IEEE
ISSN :
1095-7863
Print_ISBN :
0-7803-9221-3
Type :
conf
DOI :
10.1109/NSSMIC.2005.1596927
Filename :
1596927
Link To Document :
بازگشت