Title :
Context by region ancestry
Author :
Joseph J. Lim;Pablo Arbelaez;Pablo Arbeláez; Chunhui Gu;Jitendra Malik
Author_Institution :
University of California, Berkeley, 94720, USA
Abstract :
In this paper, we introduce a new approach for modeling visual context. For this purpose, we consider the leaves of a hierarchical segmentation tree as elementary units. Each leaf is described by features of its ancestral set, the regions on the path linking the leaf to the root. We construct region trees by using a high-performance segmentation method. We then learn the importance of different descriptors (e.g. color, texture, shape) of the ancestors for classification. We report competitive results on the MSRC segmentation dataset and the MIT scene dataset, showing that region ancestry efficiently encodes information about discriminative parts, objects and scenes.
Keywords :
"Statistics","Statistical distributions","Pixel","Image denoising","Markov random fields","Application software","Computer science","Educational institutions","Probability distribution","Random number generation"
Conference_Titel :
Computer Vision, 2009 IEEE 12th International Conference on
Print_ISBN :
978-1-4244-4420-5
Electronic_ISBN :
2380-7504
DOI :
10.1109/ICCV.2009.5459436