Title :
Multivariate dictionary learning and shift & 2D rotation invariant sparse coding
Author :
Q. Barthélemy;A. Larue;A. Mayoue;D. Mercier;J. I. Mars
Author_Institution :
CEA, LIST, Laboratoire d´Outils pour l´Analyse de Donné
fDate :
6/1/2011 12:00:00 AM
Abstract :
In this article, we present a new tool for sparse coding : Multivariate DLA which empirically learns the characteristic patterns associated to a multivariate signals set. Once learned, Multivariate OMP approximates sparsely any signal of this considered set. These methods are specified to the 2D rotation-invariant case. Shift and rotation-invariant cases induce a compact learned dictionary. Our methods are applied to 2D handwritten data in order to extract the elementary features of this signals set.
Keywords :
"Dictionaries","Kernel","Encoding","Approximation methods","Approximation algorithms","Matching pursuit algorithms","Learning systems"
Conference_Titel :
Statistical Signal Processing Workshop (SSP), 2011 IEEE
Print_ISBN :
978-1-4577-0569-4
DOI :
10.1109/SSP.2011.5967783