Title :
Independent component analysis and MLLR transforms for speaker identification
Author :
Sandro Cumani;Oldřich Plchot;Martin Karafiát
Author_Institution :
Politecnico di Torino, Italy
fDate :
3/1/2012 12:00:00 AM
Abstract :
In this paper, we explore the use of Independent Component Analysis (ICA) and Principal Component Analysis (PCA) techniques to reduce the dimensionality of high-level LVCSR features and at the same time to enable modelling them with state-of-the-art techniques like Probabilistic Linear Discriminant Analysis or Pairwise Support Vector Machines (PSVM). The high-level features are the coefficients from Constrained Maximum-Likelihood Linear Regression (CMLLR) and Maximum-Likelihood Linear Regression (MLLR) transforms estimated in an Automatic Speech Recognition (ASR) system. We also compare a classical approach of modeling every speaker by a single SVM classifier with the recent state-of-the-art modelling techniques in Speaker Identification. We report performance of the systems and score-level combination with a current state-of-the-art acoustic i-vector system on the NIST SRE2010 dataset.
Keywords :
"Abstracts","Indexes","Support vector machines","Algorithm design and analysis","Analytical models","Training","Principal component analysis"
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on
Print_ISBN :
978-1-4673-0045-2
DOI :
10.1109/ICASSP.2012.6288886