DocumentCode :
36584
Title :
A Recursive Local Linear Estimator for Identification of Nonlinear ARX Systems: Asymptotical Convergence and Applications
Author :
Wenxiao Zhao ; Wei Xing Zheng ; Er-Wei Bai
Author_Institution :
Key Lab. of Syst. & Control, Acad. of Math. & Syst. Sci., Beijing, China
Volume :
58
Issue :
12
fYear :
2013
fDate :
Dec. 2013
Firstpage :
3054
Lastpage :
3069
Abstract :
In this paper, we propose a recursive local linear estimator (RLLE) for nonparametric identification of nonlinear autoregressive systems with exogenous inputs (NARX). First, the RLLE is introduced. Next, the strong consistency as well as the asymptotical mean square error properties of the RLLE are established, and then an application of the RLLE to an additive nonlinear system is discussed. The RLLE provides recursive estimates not only for the function values but also their gradients at fixed points. A simulation example is provided to confirm the theoretical analysis.
Keywords :
mean square error methods; nonlinear systems; recursive estimation; NARX; RLLE; additive nonlinear system; asymptotical mean square error properties; nonlinear ARX system identification; nonlinear autoregressive systems with exogenous inputs; nonparametric identification; recursive local linear estimator; Additives; Bandwidth; Convergence; Educational institutions; Kernel; Nonlinear systems; Standards; Additive nonlinear system; almost sure convergence; local linear estimator; nonlinear autoregressive systems with exogenous inputs (NARX) system; recursive identification;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2013.2273283
Filename :
6558780
Link To Document :
بازگشت