DocumentCode :
3662043
Title :
Adaptive control for micro/nano positioning system driven by piezo electric actuator
Author :
Xinkai Chen; Shengjun Wen; Dongyun Wang;Chun-Yi Su
Author_Institution :
Shibaura Institute of Technology, Saitama 337-8570, Japan
fYear :
2015
fDate :
6/1/2015 12:00:00 AM
Firstpage :
66
Lastpage :
71
Abstract :
In this paper, a novel adaptive control law for the micro/nano positioning system is proposed, where the parameterized hysteresis model is employed. The formulated control law guarantees the global stability of the controlled positioning system, and the position error can be driven to approach to zero asymptotically. The advantage is that only the parameters needed in the control design are estimated online where the variation of the parameters can also be coped with, the real values of the parameters of the positioning system need to be neither identified nor measured, and good transient performance and good position tracking can be achieved. Experimental results show the effectiveness of the proposed method.
Keywords :
"Hysteresis","Adaptive control","Adaptation models","Force","Actuators","Stability analysis","Nanobioscience"
Publisher :
ieee
Conference_Titel :
Industrial Electronics (ISIE), 2015 IEEE 24th International Symposium on
Electronic_ISBN :
2163-5145
Type :
conf
DOI :
10.1109/ISIE.2015.7281445
Filename :
7281445
Link To Document :
بازگشت