Title :
Subgraph domatic problem and writing capacity of memory devices with restricted state transitions
Author :
Tadashi Wadayama;Taisuke Izumi;Hirotaka Ono
Author_Institution :
Nagoya Institute of Technology, Japan
fDate :
6/1/2015 12:00:00 AM
Abstract :
A code design problem for memory devices with restricted state transitions is formulated as a combinatorial optimization problem that is called a subgraph domatic partition (subDP) problem. If any neighbor set of a given state transition graph contains all the colors, then the coloring is said to be valid. The goal of a subDP problem is to find the valid coloring that has the largest number of colors for a subgraph of a given directed graph. The number of colors in an optimal valid coloring indicates the writing capacity of that state transition graph. The subDP problems are computationally hard; it is proved to be NP-complete in this paper. One of our main contributions in this paper is to show the asymptotic behavior of the writing capacity C(G) for sequences of dense bidirectional graphs; this is given by C(G) = Ω(n/ ln n), where n is the number of nodes. A probabilistic method, Lovász local lemma (LLL), plays an essential role in deriving the asymptotic expression.
Keywords :
"Writing","Encoding","Color","Decoding","Upper bound","Ash","Modulation"
Conference_Titel :
Information Theory (ISIT), 2015 IEEE International Symposium on
Electronic_ISBN :
2157-8117
DOI :
10.1109/ISIT.2015.7282667