• DocumentCode
    3665212
  • Title

    The investigation of dielectric barrier impact on the breakdown voltage in high voltage systems by modeling and simulation

  • Author

    Elham Foruzan;Hamid Vakilzadian

  • Author_Institution
    Department of Electrical and Computer Engineering, University of Nebraska Lincoln, USA
  • fYear
    2015
  • fDate
    7/1/2015 12:00:00 AM
  • Firstpage
    1
  • Lastpage
    5
  • Abstract
    Nonpressurized air is used extensively as a basic insulation medium in medium/high voltage equipment. An inherent problem of air-insulated designs is that the systems tend to become physically large. Application of dielectric barriers can increase the breakdown voltage and thereby decrease the size of the equipment. In this paper, the impact of polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC) as dielectric barriers on breakdown voltage for DC and AC voltages were investigated by developing two geometric models. In the first model, it was assumed that a U-shaped electrode was covered with PVC dielectric. In the second model, it was assumed that PTFE dielectric was inserted in the air gap between electrodes. Both models were simulated using COMSOL Multiphysics software. The simulation results were verified by experimentation in the lab. The results show that a layer of PTFE and PVC dielectrics behaved as a mechanical obstacle, and they increased the voltage breakdown channel. In addition, the residual charges over the barrier changed the electric field distribution, resulting in a significant increase in the breakdown voltage.
  • Keywords
    "Electrodes","Dielectrics","Atmospheric modeling","Electric fields","Electric breakdown","Mathematical model","Breakdown voltage"
  • Publisher
    ieee
  • Conference_Titel
    Power & Energy Society General Meeting, 2015 IEEE
  • ISSN
    1932-5517
  • Type

    conf

  • DOI
    10.1109/PESGM.2015.7285653
  • Filename
    7285653