Title :
A Preliminary Study on Deep-Learning Based Screaming Sound Detection
Author :
Md. Zaigham Zaheer;Jin Young Kim;Hyoung-Gook Kim;Seung You Na
Author_Institution :
Dept. of Electron. &
Abstract :
In addition to the traditional video surveillance, various audio processing techniques can also be added to the existing CCTV cameras. They can be used as additional features to help in analyzing the scene better and autonomously detecting violence or any unwanted activity in the scene. For this purpose, a deep learning based scream sound detection approach is proposed in this paper. MFCC features after interpolation are used as input of the system. The proposed system is experimented using a self-recorded scream database and with controlled and calculated parameters 100 % accuracy is achieved.
Keywords :
"Mel frequency cepstral coefficient","Feature extraction","Training","Accuracy","Surveillance","Machine learning","Cameras"
Conference_Titel :
IT Convergence and Security (ICITCS), 2015 5th International Conference on
DOI :
10.1109/ICITCS.2015.7292925