DocumentCode
3672390
Title
Deep visual-semantic alignments for generating image descriptions
Author
Andrej Karpathy;Li Fei-Fei
Author_Institution
Department of Computer Science, Stanford University, USA
fYear
2015
fDate
6/1/2015 12:00:00 AM
Firstpage
3128
Lastpage
3137
Abstract
We present a model that generates natural language descriptions of images and their regions. Our approach leverages datasets of images and their sentence descriptions to learn about the inter-modal correspondences between language and visual data. Our alignment model is based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural Networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding. We then describe a Multimodal Recurrent Neural Network architecture that uses the inferred alignments to learn to generate novel descriptions of image regions. We demonstrate that our alignment model produces state of the art results in retrieval experiments on Flickr8K, Flickr30K and MSCOCO datasets. We then show that the generated descriptions significantly outperform retrieval baselines on both full images and on a new dataset of region-level annotations.
Publisher
ieee
Conference_Titel
Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on
Electronic_ISBN
1063-6919
Type
conf
DOI
10.1109/CVPR.2015.7298932
Filename
7298932
Link To Document