• DocumentCode
    3672572
  • Title

    Robust image filtering using joint static and dynamic guidance

  • Author

    Bumsub Ham;Minsu Cho;Jean Ponce

  • Author_Institution
    INRIA Sophia-Antipolis, France
  • fYear
    2015
  • fDate
    6/1/2015 12:00:00 AM
  • Firstpage
    4823
  • Lastpage
    4831
  • Abstract
    Regularizing images under a guidance signal has been used in various tasks in computer vision and computational photography, particularly for noise reduction and joint upsampling. The aim is to transfer fine structures of guidance signals to input images, restoring noisy or altered structures. One of main drawbacks in such a data-dependent framework is that it does not handle differences in structure between guidance and input images. We address this problem by jointly leveraging structural information of guidance and input images. Image filtering is formulated as a nonconvex optimization problem, which is solved by the majorization-minimization algorithm. The proposed algorithm converges quickly while guaranteeing a local minimum. It effectively controls image structures at different scales and can handle a variety of types of data from different sensors. We demonstrate the flexibility and effectiveness of our model in several applications including depth super-resolution, scale-space filtering, texture removal, flash/non-flash denoising, and RGB/NIR denoising.
  • Keywords
    "Joints","Color","Noise reduction","Image resolution","Linear programming","Image edge detection","Kernel"
  • Publisher
    ieee
  • Conference_Titel
    Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on
  • Electronic_ISBN
    1063-6919
  • Type

    conf

  • DOI
    10.1109/CVPR.2015.7299115
  • Filename
    7299115