DocumentCode :
3673234
Title :
Chaos automata for sequence visualization
Author :
Daniel Ashlock;Cameron McGuinness;Wendy Ashlock
Author_Institution :
Department of Mathematics and Statistics at the University of Guelph, in Guelph, Ontario, Canada, N1G 2W1
fYear :
2015
Firstpage :
1
Lastpage :
8
Abstract :
A chaos automata is a type of side effect machine that serves as a state-conditioned version of the chaos game used to visualize DNA or other linear sequence data. This study performs a parameter study to tune an evolutionary algorithm for locating chaos automata that make relatively dense renderings of two-class DNA data. Both the number of states and the population size turn out to be relatively soft parameters, but there is benefit to tuning the mutation rate. The fitness landscape is found to be rugose and to possess a large number of optima. A reporting tool called time of last innovation is used to provide additional nuance to the traditional reporting of best fitness values. Topics for additional work are outlined, including a demonstration that chaos automata can be averaged to provide an additional avenue to search for effective visualizations. The system is tested on synthetic and biological data.
Keywords :
"Chaos","DNA","Automata","Games","Sociology","Statistics","Fractals"
Publisher :
ieee
Conference_Titel :
Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2015 IEEE Conference on
Type :
conf
DOI :
10.1109/CIBCB.2015.7300339
Filename :
7300339
Link To Document :
بازگشت