DocumentCode :
3674757
Title :
Side-Channel Leakage Models for RISC Instruction Set Architectures from Empirical Data
Author :
Hermann Seuschek;Stefan Rass
Author_Institution :
Inst. for Security in Inf. Technol., Tech. Univ. Mυ
fYear :
2015
Firstpage :
423
Lastpage :
430
Abstract :
Side-channel attacks are currently among the most serious threats for embedded systems. Popular countermeasures to mitigate the impact of such attacks are masking schemes, where secret intermediate values are split in two or more values by virtue of secret sharing. Processing the secret happens on separate execution paths, which are executed on the same central processing unit (CPU). In case of unwanted correlations between different registers inside the CPU the shared secret may leak out through a side-channel. This problem is particularly evident on low cost embedded systems, such as nodes for the Internet of Things (IoT), where cryptographic algorithms are often implemented in pure software on a reduced instruction set computer (RISC). On such an architecture, all data manipulation operations are carried out on the contents of the CPU´s register file. This means that all intermediate values of the cryptographic algorithm at some stage pass through the register file. Towards avoiding unwanted correlations and leakages thereof, special care has to be taken in the mapping of the registers to intermediate values of the algorithm. In this work, we describe an empirical study that reveals effects of unintended unmasking of masked intermediate values and thus leaking secret values. The observed phenomena are related to the leakage of masked hardware implementations caused by glitches in the combinatorial path of the circuit but the effects are abstracted to the level of the instruction set architecture on a RISC CPU. Furthermore, we discuss countermeasures to have the compiler thwart such leakages.
Keywords :
"Registers","Correlation","Cryptography","Computer architecture","Reduced instruction set computing","Central Processing Unit","Hamming distance"
Publisher :
ieee
Conference_Titel :
Digital System Design (DSD), 2015 Euromicro Conference on
Type :
conf
DOI :
10.1109/DSD.2015.117
Filename :
7302305
Link To Document :
بازگشت