Title :
-Equivalence in Group Algebras and Minimal Abelian Codes
Author :
Ferraz, Raul Antonio ; Guerreiro, M. ; Polcino Milies, Cesar
Author_Institution :
Inst. de Mat. e Estatistica, Univ. de Sao Paulo, Sao Paulo, Brazil
Abstract :
Let G be a finite Abelian group and BBF a field such that char(BBF ) does not divide |G|. Denote by BBF G the group algebra of G over BBF. A (semisimple) Abelian code is an ideal of BBF G. Two codes ℑ1 and ℑ2 of BBF G are G-equivalent if there exists an automorphism ψ of G whose linear extension to BBF G maps ℑ1 onto ℑ2. In this paper, we give a necessary and sufficient condition for minimal Abelian codes to be G-equivalent and show how to correct some results in the literature.
Keywords :
codes; group theory; G-equivalence; finite Abelian group; group algebras; linear extension; minimal Abelian codes; Algebra; Context; Human computer interaction; Indexes; Information theory; Lattices; Materials; $G$-equivalence; Abelian codes; group algebra; primitive idempotent;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2013.2284211