• DocumentCode
    36763
  • Title

    G -Equivalence in Group Algebras and Minimal Abelian Codes

  • Author

    Ferraz, Raul Antonio ; Guerreiro, M. ; Polcino Milies, Cesar

  • Author_Institution
    Inst. de Mat. e Estatistica, Univ. de Sao Paulo, Sao Paulo, Brazil
  • Volume
    60
  • Issue
    1
  • fYear
    2014
  • fDate
    Jan. 2014
  • Firstpage
    252
  • Lastpage
    260
  • Abstract
    Let G be a finite Abelian group and BBF a field such that char(BBF ) does not divide |G|. Denote by BBF G the group algebra of G over BBF. A (semisimple) Abelian code is an ideal of BBF G. Two codes ℑ1 and ℑ2 of BBF G are G-equivalent if there exists an automorphism ψ of G whose linear extension to BBF G maps ℑ1 onto ℑ2. In this paper, we give a necessary and sufficient condition for minimal Abelian codes to be G-equivalent and show how to correct some results in the literature.
  • Keywords
    codes; group theory; G-equivalence; finite Abelian group; group algebras; linear extension; minimal Abelian codes; Algebra; Context; Human computer interaction; Indexes; Information theory; Lattices; Materials; $G$-equivalence; Abelian codes; group algebra; primitive idempotent;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2013.2284211
  • Filename
    6617707