Abstract :
This paper proposes a parameter identification method of induction motors (IMs) at a standstill using integral calculations. The rotor time constant and magnetizing inductance are identified. During identification process, the induction motor to be tested is consistently excited according to a pre-determined current reference. Using the pre-determined current, the tested motor emulates the rated rotor flux and the rated slip condition even at a standstill. Therefore, the identification result is quite accurate. And, this method is based on integral calculation so that the results are robust to measurement noise. The repeatability of the identification result is remarkable. Due to the simplicity of the proposed technique, this method can be easily applied to the commercial inverter products. Experimental results confirm the effectiveness of the proposed method.