Title :
Probabilistic Map Matching of Sparse and Noisy Smartphone Location Data
Author :
George Rosario Jagadeesh;Thambipillai Srikanthan
Author_Institution :
Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore
Abstract :
There is an immense amount of location data being collected today from smartphone users by various service providers. Due to bandwidth and battery-life considerations, smartphone locations are generally sampled at sparse intervals using energy-efficient, but inaccurate, alternatives to the power-hungry Global Positioning System (GPS). If sparse sequences of coarse location data obtained from mobile users can be accurately map-matched to travel paths on the road network, then this data can be effectively used for several traffic-related applications. Unlike most other map-matching methods in the literature, we, in this paper, focus on the problem of map-matching sparse and noisy non-GPS smartphone location data. We adopt the widely-followed Hidden Markov Model (HMM) approach and propose new probabilistic models for the observation and transition probabilities tailored towards the type of data being considered. Our map-matching method has been evaluated using ground-truth labelled non-GPS location data collected from real drives. Tests show that the accuracy of the proposed method is about 12% more than that of a comparable HMM-based method from the literature. Our results also show that the runtime and latency of the proposed method can be kept within reasonable bounds using simple techniques.
Keywords :
"Hidden Markov models","Global Positioning System","Accuracy","Measurement errors","Roads","Runtime","Noise measurement"
Conference_Titel :
Intelligent Transportation Systems (ITSC), 2015 IEEE 18th International Conference on
Electronic_ISBN :
2153-0017
DOI :
10.1109/ITSC.2015.137