Title :
A Highly Accurate Level Set Approach for Segmenting Green Microalgae Images
Author :
Vinicius R. Pereira Borges;Bernd Hamann;Thais G. Silva;Armando A.H. Vieira;Maria Cristina F. Oliveira
Author_Institution :
Inst. de Cienc. Mat. e de Comput., Univ. of Sao Paulo, Sao Carlos, Brazil
Abstract :
We present a method for segmenting 2D microscopy images of freshwater green microalgae. Our approach is based on a specialized level set method, leading to efficient and highly accurate algae segmentation. The level set formulation of our problem allows us to generate an algae´s boundary curve as the result of an evolving level curve, based on computed background and algae regions in a given image. By characterizing the distributions of image intensity values in local regions, we are able to automatically classify image regions into background and algae regions. We present results obtained with our method. These results are very promising as they document that we can achieve highly accurate algae segmentations when comparing ours against manually segmented images (segmented by an expert biologist) and with results derived by other approaches covered in the literature.
Keywords :
"Algae","Level set","Image segmentation","Image edge detection","Eigenvalues and eigenfunctions","Shape"
Conference_Titel :
Graphics, Patterns and Images (SIBGRAPI), 2015 28th SIBGRAPI Conference on
Electronic_ISBN :
1530-1834
DOI :
10.1109/SIBGRAPI.2015.33