Title :
A machine learning methodology for medical imaging anonymization
Author :
Eriksson Monteiro;Carlos Costa;José Luis Oliveira
Author_Institution :
Univ. of Aveiro, Portugal
Abstract :
Privacy protection is a major requirement for the complete success of EHR systems, becoming even more critical in collaborative scenarios, where data is shared among institutions and practitioners. While textual data can be easily de-identified, patient data in medical images implies a more elaborate approach. In this work we present a solution for sensitive word identification in medical images based on a combination of two machine-learning models, achieving a F1-score of 0.94. Three experts evaluated the system performance. They analyzed the output of the present methodology and categorized the studies in three groups: studies that had their sensitive words removed (true positive), studies with complete patient identity (false negative) and studies with mistakenly removed data (false positive). The experts were unanimous regarding the relevance of the present tool in collaborative medical environments, as it may improve the exchange of anonymized patient data between institutions.
Keywords :
"DICOM","Optical character recognition software","Text recognition","Metadata","Image recognition","Pipelines"
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
Electronic_ISBN :
1558-4615
DOI :
10.1109/EMBC.2015.7318626