Title :
Brain network properties in depressed patients receiving seizure therapy: A graph theoretical analysis of peri-treatment resting EEG
Author :
Zhi-De Deng;Shawn M. McClinctock;Sarah H. Lisanby
Author_Institution :
Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
Abstract :
Electroconvulsive therapy (ECT), the most efficacious antidepressant therapy for treatment-resistant depression, has been reported to alter functional brain network architecture by down-regulating connectivity in frontotemporal circuitry. Magnetic seizure therapy (MST), which induces therapeutic seizures with high dose repetitive transcranial magnetic stimulation, has been introduced to improve the seizure therapy risk/benefit ratio. Unfortunately, there is limited understanding of seizure therapy´s underlying mechanisms of action. In this study, we apply graph theory-based connectivity analysis to peri-treatment, resting-state, topographical electroencephalography (EEG) in patients with depression receiving seizure therapy. Functional connectivity was assessed using the de-biased weighted phase lag index, a measure of EEG phase synchronization. Brain network structure was quantified using graph theory metrics, including betweenness centrality, clustering coefficient, network density, and characteristic path length. We found a significant reduction in the phase synchronization and aberration of the small-world architecture in the beta frequency band, which could be related to acute clinical and cognitive effects of seizure therapy.
Keywords :
"Electroencephalography","Medical treatment","Synchronization","Frequency measurement","Organizations","Frequency synchronization","Yttrium"
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
Electronic_ISBN :
1558-4615
DOI :
10.1109/EMBC.2015.7318828