Title :
An intra-body molecular communication networks framework for continuous health monitoring and diagnosis
Author :
Youssef Chahibi;Ilangko Balasingham
Author_Institution :
Broadband Wireless Networking Laboratory, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, 30332, USA
Abstract :
Intra-body communication networks are designed to interconnect nano- or micro-sized sensors located inside the body for health monitoring and drug delivery. The most promising solutions are made of implanted nanosensors to timely monitor the body for the presence of specific diseases and pronounce a diagnosis without the intervention of a physician. In this manner, several deadly health conditions such as heart attacks are avoided through the early in vivo detection of their biomarkers. In reality, nanosensors are challenged by the individual specificities, molecular noise, limited durability, and low energy resources. In this paper, a framework is proposed for estimating and detecting diseases and localizing the nanosensors. This framework is based on molecular communication, a novel communication paradigm where information is conveyed through molecules. Through the case study of the shedding of endothelial cells as an early biomarker for heart attack, the intra-body molecular communication networks framework is shown to resolve major issues with in vivo nanosensors and lay the foundations of low-complexity biomedical signal processing algorithms for continuous disease monitoring and diagnosis.
Keywords :
"Biomarkers","Nanosensors","Arteries","Molecular communication","Cardiac arrest","Monitoring"
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
Electronic_ISBN :
1558-4615
DOI :
10.1109/EMBC.2015.7319290