Title :
Determining inertial measurement unit placement for estimating human trunk sway while standing, walking and running
Author :
Bo Yu;Tian Bao;Dingguo Zhang;Wendy Carender;Kathleen H. Sienko;Peter B. Shull
Author_Institution :
State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 200240, China
Abstract :
Inertial measurement units (IMU) are often used to estimate medial-lateral (M/L) trunk sway for assessing and treating gait disorders, and IMU sensor placement is an important factor effecting estimation accuracy. This study tracked multi-segment spine movements during standing and ambulation tasks to determine optimal IMU placement. Ten young healthy subjects, wearing markers placed along the spine, left/right acromion, and left/right posterior superior iliac spine performed standing and walking trials in a motion capture laboratory. Results showed that movement at the spine location T7-T8 most closely matched the clinical definition of M/L trunk sway for standing trials (0.5 deg error) and at the spine location T9-T10 for walking trials (1.0 deg error), while movement at the lower spine L2-L4 tended to be the least accurate for standing and ambulation tasks (1.5 deg error and 4.0 deg error, respectively). Based on these results, a second study was performed to develop and validate a trunk sway estimation algorithm during walking trials with a single optimally-placed IMU. IMU trunk sway estimation was compared to the clinical definition of trunk sway from motion capture markers and showed root-mean-square errors of 2.5 deg and peak trunk sway errors of 2.0 deg. The results of this study suggest that IMUs should be placed on the mid-back to reduce errors associated with spine movements not matching clinically-defined M/L trunk motion.
Keywords :
"Legged locomotion","Estimation","Accuracy","Gravity","Magnetometers","Sensor fusion","Motion segmentation"
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
Electronic_ISBN :
1558-4615
DOI :
10.1109/EMBC.2015.7319431