Title :
Rotational ranges of human precision manipulation when grasping objects with two to five digits
Author :
Thomas Feix;Ian M. Bullock;Yuri Gloumakov;Aaron M. Dollar
Author_Institution :
Yale University, New Haven, CT, 06511, USA
Abstract :
The ability to move and manipulate objects within the hand is important for the overall performance of the human hand. Such movements are key for many tasks, including writing, using precision tools, turning knobs, and operating various haptic interfaces. In this work we analyze the ability of 17 unimpaired subjects to rotate objects 50 and 80 mm in diameter using 2 to 5 digits, while maintaining the initial finger-object contact locations. Subjects were asked to rotate the object with a particular number of fingers around one of three orthogonal hand axes for 30 seconds and explore their rotational range. The average rotational range achieved over all conditions was 47 degrees, with the largest rotation of 82 degrees for the 3 digit case around a distal-proximal axis. The rotations around the palmar-dorsal and the ulnar-radial axes showed similar trends, where the smaller object resulted in 1.3 and 1.2 times larger rotation workspaces than the larger object (p <; 0.001), respectively. The rotation around the distal-proximal axis has a different trend, where the difference in rotation amplitude between different number of finger conditions is over 50% (p <; 0.003), but the difference in object size conditions is only 10%. The results highlight that the orientation of the rotation axis has significant influence on the rotation capabilities of the human hand. In designing handheld tools and haptic devices one should carefully consider around which axes a rotation is required.
Keywords :
"Thumb","Yttrium","Market research","Haptic interfaces","Robots","Stability analysis"
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
Electronic_ISBN :
1558-4615
DOI :
10.1109/EMBC.2015.7319707