DocumentCode :
3685408
Title :
Peripheral venous blood oxygen saturation can be non-invasively estimated using photoplethysmography
Author :
Musabbir Khan;Christopher G. Pretty;Alexander C. Amies;Rodney B. Elliott;Fatanah M. Suhaimi;Geoffrey M. Shaw;J. Geoffrey Chase
Author_Institution :
Dept. of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
fYear :
2015
Firstpage :
6405
Lastpage :
6408
Abstract :
Measurement of peripheral venous oxygen saturation (SvO2) is currently performed using invasive catheters or direct blood draw. The purpose of this study was to non-invasively determine SvO2 using a variation of pulse oximetry techniques. Artificial respiration-like modulations applied to the peripheral vascular system were used to infer regional SvO2 using photoplethysmography (PPG) sensors. To achieve this modulation, an artificial pulse generating system (APG) was developed to generate controlled, superficial perturbations on the finger using a pneumatic digit cuff. These low pressure and low frequency modulations affect blood volumes in veins to a much greater extent than arteries due to significant arterial-venous compliance differences. Ten healthy human volunteers were recruited for proof-ofconcept testing. The APG was set at a modulation frequency of 0.2 Hz (12 bpm) and 45-50 mmHg compression pressure. Initial analysis showed that induced blood volume changes in the venous compartment could be detected by PPG. Estimated arterial oxygen saturation (97% [IQR=96.1%-97.4%]) matches published values (95%-99%). Estimated venous oxygen saturation (93.2% [IQR=91.-93.9%]) agrees with reported ranges (92%-95%) measured in peripheral regions. The median difference between the two saturations was 3.6%, while the difference between paired measurements in each subject was statistically significant (p=0.002). These results demonstrate the feasibility of this method for real-time, low cost, non-invasive estimation of SvO2. Further validation of this method is warranted.
Keywords :
"Blood","Fingers","Modulation","Band-pass filters","Finite impulse response filters","Sensors","Veins"
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
ISSN :
1094-687X
Electronic_ISBN :
1558-4615
Type :
conf
DOI :
10.1109/EMBC.2015.7319858
Filename :
7319858
Link To Document :
بازگشت