Title :
Camera-based fall detection using a particle filter
Author :
Glen Debard;Greet Baldewijns;Toon Goedemé;Tinne Tuytelaars;Bart Vanrumste
Author_Institution :
Thomas More Kempen, MOBILAB, Geel, Belgium
Abstract :
More than thirty percent of persons over 65 years fall at least once a year and are often not able to get up again. The lack of timely aid after such a fall incident can lead to severe complications. This timely aid can however be assured by a camera-based fall detection system triggering an alarm when a fall occurs. Most algorithms described in literature use the biggest object detected using background subtraction to extract the fall features. In this paper we compare the performance of our state-of-the-art fall detection algorithm when using only background subtraction, when using a particle filter to track the person and a hybrid method in which the particle filter is only used to enhance the background subtraction and not for the feature extraction. We tested this using our simulation data set containing reenactments of real-life falls. This comparison shows that this hybrid method significantly increases the sensitivity and robustness of the fall detection algorithm resulting in a sensitivity of 76.1% and a PPV of 41.2%.
Keywords :
"Feature extraction","Histograms","Tracking","Detection algorithms","Sensitivity","Image color analysis","Atmospheric measurements"
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
Electronic_ISBN :
1558-4615
DOI :
10.1109/EMBC.2015.7319990