Title :
Dual-path NMR receiver using double transceiver microcoils
Author :
Hossein Pourmodheji;Ebrahim Ghafar-Zadeh;Sebastian Magierowski
Author_Institution :
Department of Electrical Engineering and Computer Science, Lassonde school of Engineering, York University, Toronto, Canada
Abstract :
We present a fully integrated CMOS dual path front-end receiver for NMR applications. Instead of conventional NMR systems which are using one transceiver coil, we propose a dual-path receiver in which it has two transceiver microcoils. This structure cancels the background signal and consequently improving the sensitivity. Spectral simulations of the dual-path receiver are used to verify cancellation of the background signal in this structure. The front-end receiver contains two differential low-noise amplifiers (LNA), two voltage buffers (for conventional mode), two phase shifters, two variable gain amplifiers (VGA), one differential LNA and voltage buffer at the end. This chain of dual-path receiver is designed for 21 MHz NMR settings. The front-end receiver achieves an input referred noise of 2.7 nV/√Hz and voltage gain of 80 dB. The chip is designed in a 0.13-μm CMOS technology and occupies an area of 1 mm × 2 mm.
Keywords :
"Nuclear magnetic resonance","Receivers","Magnetic fields","Solenoids","CMOS integrated circuits","Transceivers","Sensitivity"
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
Electronic_ISBN :
1558-4615
DOI :
10.1109/EMBC.2015.7320030