Title :
A magnet-and-spring based visualization technique for enhancing the manipulation of requirements artifacts
Author_Institution :
Department of Informatics, University of Zurich, Binzmü
Abstract :
Requirements engineers model the system of interest from different points of view by creating numerous artifacts. Although they have to deal with a great amount of information, the display space of the devices is limited. This limitation leads to a time consuming navigation through the artifacts. Requirements engineers have to scroll through numerous pages and switch between multiple windows. However, they have to rely on their memory when there is no space left on the screen to view another piece of relevant information. In this research, we propose to develop a novel visualization technique that flexibly creates editable views of a linked set of elements or artifacts where the pieces show different levels of detail according to the user´s demand for the current task. Thus, important parts are shown in detail, while the space taken for displaying unimportant parts is minimized. Our conceptual solution is a combination of the focus+context concept and a magnet-and-spring system. The focus+context concept is responsible for resizing and relocating objects to make space for more relevant information. The magnet-and-spring system is responsible for distributing the distortion caused by the focus+context concept throughout the workspace, such that the distorted view of the information looks more natural. Considering the artifacts of a software development project as a single hypothetical artifact enables us to manage the artifacts in the same way we deal with the objects inside an artifact. Our envisaged tool support should be embeddable in requirements applications and bring its benefits to the applications manipulating requirements artifacts.
Keywords :
"Visualization","Springs","Context","Unified modeling language","Distortion","Magnetosphere","Navigation"
Conference_Titel :
Requirements Engineering Conference (RE), 2015 IEEE 23rd International
DOI :
10.1109/RE.2015.7320459