DocumentCode
3696737
Title
Non-parametric Spectral Model for Shape Retrieval
Author
Andrea Gasparetto;Giorgia Minello;Andrea Torsello
Author_Institution
Dipt. di Sci. Ambientali, Inf. e Statistica Univ. Ca´ Foscari Venezia, Venice, Italy
fYear
2015
Firstpage
344
Lastpage
352
Abstract
Non-rigid 3D shape retrieval is an active and important research topic in content based object retrieval. This problem is often cast in terms of the shapes intrinsic geometry due to its invariance to a wide range of non-rigid deformations. In this paper, we devise a novel generative model for shape retrieval based on the spectral representation of the Laplacian of a mesh. Contrary to common use, our approach avoids the ubiquitous correspondence problem by transforming the eigenvectors of the Laplacian to a density in the spectral-embedding space which is estimated nonparametrically. We show that this model can efficiently be learned from a set of 3D meshes. The experimental results on the SHREC´14 benchmark show the effectiveness of the approach compared to the state-of-the-art.
Keywords
"Shape","Eigenvalues and eigenfunctions","Laplace equations","Three-dimensional displays","Solid modeling","Computational modeling","Kernel"
Publisher
ieee
Conference_Titel
3D Vision (3DV), 2015 International Conference on
Type
conf
DOI
10.1109/3DV.2015.46
Filename
7335502
Link To Document