DocumentCode :
3699235
Title :
A novel gender classification method based on MapReduce
Author :
Tong Cui;Haifeng Zhao
Author_Institution :
Science and Technology on Information Systems Engineering Laboratory, Nanjing China
fYear :
2015
Firstpage :
742
Lastpage :
745
Abstract :
A novel parallelize gender recognition method with MapReduce is presented, which successfully comprise several machine leaning algorithms which are employed for gender recognition. The mass of face sample images are gathered and separated as train dataset and test dataset, and Local Binary Pattern (LBP) features are extracted when those sample sets are pre-processed and made ready for following operations. And Principle Component Analysis (PCA) is applied to train dataset to extract the most distinguishing features. Three classification algorithms: Support Vector Machine(SVM), k-Nearest Neighborhood (k-NN) and Adaboost are implemented and compared to determine the most suitable and successful algorithm for gender parallelize machine learning (GPML). To achieve the shortest execution time, we propose to apply GPML with MapReduce to avoid parallelizing above three algorithms while also improving their scalability to big datasets. The results show that this method reduces the training computational complexity significantly when the number of computing nodes increases while gaining better speedup rates and extending performance than those on parallelize Adaboost.
Publisher :
ieee
Conference_Titel :
Software Engineering and Service Science (ICSESS), 2015 6th IEEE International Conference on
ISSN :
2327-0586
Print_ISBN :
978-1-4799-8352-0
Electronic_ISBN :
2327-0594
Type :
conf
DOI :
10.1109/ICSESS.2015.7339163
Filename :
7339163
Link To Document :
بازگشت