Title :
Wireless physical-layer security with multiple receivers and eavesdroppers: Outage probability and average secrecy capacity
Author :
Yongjue Chen;Wei Li;Huixi Shu
Author_Institution :
Department of Electronic and Information Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China
Abstract :
The wiretap channel model in a wireless scenario is analyzed where there is a transmitter, multiple legitimate receivers, non-colluding and colluding eavesdroppers; each of them is equipped with one antenna. Furthermore, all the channels are mutually independent and experiencing quasi-static Nakagami-m fading. We derive closed-form expressions for the exact secrecy outage probability as well as the average secrecy capacity with both non-colluding and colluding eavesdroppers. Such performance metrics are used to analyze the impacts of the number of receivers and eavesdroppers on the system. Remarkably, our results reveal that, for non-colluding eavesdroppers, increasing the number of users will cause greater secrecy degradation than the number of eavesdroppers, especially when the main channel is far superior to the wiretap channel or the value of the fading parameter is high. And for the colluding case, it turns out to be the opposite.
Keywords :
"Receivers","Fading","Signal to noise ratio","Land mobile radio","Communication system security","Wireless communication","Security"
Conference_Titel :
Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015 IEEE 26th Annual International Symposium on
DOI :
10.1109/PIMRC.2015.7343381