Title :
Engagement detection based on mutli-party cues for human robot interaction
Author :
Hanan Salam;Mohamed Chetouani
Author_Institution :
Institut des Syst?mes Intelligents et de Robotique, Universit? Pierre et Marie Curie-Paris 6, CNRS UMR 7222, Paris, France
Abstract :
In this paper, we address the problematic of automatic detection of engagement in multi-party Human-Robot Interaction scenarios. The aim is to investigate to what extent are we able to infer the engagement of one of the entities of a group based solely on the cues of the other entities present in the interaction. In a scenario featuring 3 entities: 2 participants and a robot, we extract behavioural cues that concern each of the entities, we then build models based solely on each of these entities´ cues and on combinations of them to predict the engagement level of each of the participants. Person-level cross validation shows that we are capable of detecting the engagement of the participant in question using solely the behavioural cues of the robot with a high accuracy compared to using the participant´s cues himself (75.91% vs. 74.32%). Moreover using the behavioural cues of the other participant is also informative where it permits the detection of the engagement of the participant in question at an accuracy of 62.15% on average. The correlation between the features of the other participant with the engagement labels of the participant in question suggests a high cohesion between the two participants. In addition, the similarity of the most significantly correlated features among the two participants suggests a high synchrony between the two parties.
Keywords :
"Feature extraction","Context","Speech","Face","Visualization","Robot kinematics"
Conference_Titel :
Affective Computing and Intelligent Interaction (ACII), 2015 International Conference on
Electronic_ISBN :
2156-8111
DOI :
10.1109/ACII.2015.7344593