Title :
Real-time robust recognition of speakers´ emotions and characteristics on mobile platforms
Author :
Florian Eyben;Bernd Huber;Erik Marchi;Dagmar Schuller;Bj?rn Schuller
Author_Institution :
audEERING UG, Gilching, Germany
Abstract :
We demonstrate audEERING´s sensAI technology running natively on low-resource mobile devices applied to emotion analytics and speaker characterisation tasks. A showcase application for the Android platform is provided, where au-dEERING´s highly noise robust voice activity detection based on Long Short-Term Memory Recurrent Neural Networks (LSTM-RNN) is combined with our core emotion recognition and speaker characterisation engine natively on the mobile device. This eliminates the need for network connectivity and allows to perform robust speaker state and trait recognition efficiently in real-time without network transmission lags. Real-time factors are benchmarked for a popular mobile device to demonstrate the efficiency, and average response times are compared to a server based approach. The output of the emotion analysis is visualized graphically in the arousal and valence space alongside the emotion category and further speaker characteristics.
Keywords :
"Feature extraction","Speech","Mobile communication","Mobile handsets","Real-time systems","Emotion recognition","Speech recognition"
Conference_Titel :
Affective Computing and Intelligent Interaction (ACII), 2015 International Conference on
Electronic_ISBN :
2156-8111
DOI :
10.1109/ACII.2015.7344658