DocumentCode :
3703619
Title :
Multi-target regression from high-speed data streams with adaptive model rules
Author :
Jo?o Duarte;Jo?o Gama
Author_Institution :
LIAAD / INESC TEC, University of Porto, Portugal
fYear :
2015
Firstpage :
1
Lastpage :
10
Abstract :
Many real life prediction problems involve predicting a structured output. Multi-target regression is an instance of structured output prediction whose task is to predict for multiple target variables. Structured output algorithms are usually computationally and memory demanding, hence are not suited for dealing with massive amounts of data. Most of these algorithms can be categorized as local or global methods. Local methods produce individual models for each output component and combine them to produce the structured prediction. Global methods adapt traditional learning algorithms to predict the output structure as a whole. We propose the first rule-based algorithm for solving multi-target regression problems from data streams. The algorithm builds on the adaptive model rules framework. In contrast to the majority of the structured output predictors, this particular algorithm does not fall into the local and global categories. Instead, each rule specializes on related subsets of the output attributes. To evaluate the performance of the proposed algorithm, two other rule-based algorithms were developed, one using the local strategy and the other using the global strategy. These methods were compared considering their prediction error, memory usage, computational time, and model complexity. Experimental results on synthetic and real data show that the local-strategy algorithm usually obtains the lowest error. However, the proposed and the global-strategy algorithms use much less memory and run significantly much faster at the cost of a slightly increase in the error, which make them very attractive when computation resources are an important factor. Also, the models produced by the latter approaches are much easier to understand since considerably less rules are produced.
Keywords :
"Prediction algorithms","Adaptation models","Heuristic algorithms","Vegetation","Predictive models","Context","Memory management"
Publisher :
ieee
Conference_Titel :
Data Science and Advanced Analytics (DSAA), 2015. 36678 2015. IEEE International Conference on
Print_ISBN :
978-1-4673-8272-4
Type :
conf
DOI :
10.1109/DSAA.2015.7344900
Filename :
7344900
Link To Document :
بازگشت