• DocumentCode
    3707663
  • Title

    Understanding symmetric smoothing filters via Gaussian mixtures

  • Author

    Stanley H. Chan;Todd Zickler;Yue M. Lu

  • Author_Institution
    School of ECE and Dept of Statistics, Purdue University, West Lafayette, IN 47907
  • fYear
    2015
  • Firstpage
    2500
  • Lastpage
    2504
  • Abstract
    We study a class of smoothing filters for image denoising. Expressed as matrices, these smoothing filters must be row normalized so that each row sums to unity. Surprisingly, if one applies a column normalization to the matrix before the row normalization, the denoising quality can often be significantly improved. This column-row normalization corresponds to one iteration of a symmetrization process called the Sinkhorn-Knopp balancing algorithm. However, a complete understanding of the performance gain phenomenon is lacking. In this paper, we analyze the performance gain from a Gaussian mixture model (GMM) perspective. We show that the symmetrization is equivalent to an expectation-maximization (EM) algorithm for learning the GMM. Moreover, we make modifications to the symmetrization procedure and present a new denoising algorithm. Experimental results show that the new algorithm achieves comparable denoising results to some state-of-the-art methods.
  • Keywords
    "Smoothing methods","Noise reduction","Clustering algorithms","Performance gain","Symmetric matrices","Noise measurement","Filtering algorithms"
  • Publisher
    ieee
  • Conference_Titel
    Image Processing (ICIP), 2015 IEEE International Conference on
  • Type

    conf

  • DOI
    10.1109/ICIP.2015.7351252
  • Filename
    7351252