Title :
Per-patch metric learning for robust image matching
Author :
Sezer Karaoglu;Ivo Everts;Jan C. van Gemert;Theo Gevers
Author_Institution :
Intelligent Systems Lab, Amsterdam, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
Abstract :
We propose a patch-specific metric learning method to improve matching performance of local descriptors. Existing methodologies typically focus on invariance, by completely considering, or completely disregarding all variations. We propose a metric learning method that is robust to only a range of variations. The ability to choose the level of robustness allows us to fine-tune the trade-off between invariance and discriminative power. We learn a distance metric for each patch independently by sampling from a set of relevant image transformations. These transformations give a-priori knowledge about the behavior of the query patch under the applied transformation in feature space. We learn the robust metric by either fully generating only the relevant range of transformations, or by a novel direct metric. The matching between query patch and data is performed with this new metric. Results on the ALOI dataset show that the proposed method improves performance of SIFT by 6.22% for geometric and 4.43% for photometric transformations.
Keywords :
"Measurement","Robustness","Lighting","Covariance matrices","Learning systems","Image representation","Image color analysis"
Conference_Titel :
Image Processing (ICIP), 2015 IEEE International Conference on
DOI :
10.1109/ICIP.2015.7351525