Title :
Reinforcement learning vs human programming in tetherball robot games
Author :
Simone Parisi;Hany Abdulsamad;Alexandros Paraschos;Christian Daniel;Jan Peters
Author_Institution :
Autonomous Systems Labs, Technical University of Darmstadt, 64289, Germany
Abstract :
Reinforcement learning of motor skills is an important challenge in order to endow robots with the ability to learn a wide range of skills and solve complex tasks. However, comparing reinforcement learning against human programming is not straightforward. In this paper, we create a motor learning framework consisting of state-of-the-art components in motor skill learning and compare it to a manually designed program on the task of robot tetherball. We use dynamical motor primitives for representing the robot´s trajectories and relative entropy policy search to train the motor framework and improve its behavior by trial and error. These algorithmic components allow for high-quality skill learning while the experimental setup enables an accurate evaluation of our framework as robot players can compete against each other. In the complex game of robot tetherball, we show that our learning approach outperforms and wins a match against a high quality hand-crafted system.
Keywords :
"Trajectory","Robot kinematics","Mathematical model","Games","Learning (artificial intelligence)","Analytical models"
Conference_Titel :
Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on
DOI :
10.1109/IROS.2015.7354296