DocumentCode :
37135
Title :
Hyperspectral Image Denoising With a Spatial–Spectral View Fusion Strategy
Author :
Qiangqiang Yuan ; Liangpei Zhang ; Huanfeng Shen
Author_Institution :
Sch. of Geodesy & Geomatics, Wuhan Univ., Wuhan, China
Volume :
52
Issue :
5
fYear :
2014
fDate :
May-14
Firstpage :
2314
Lastpage :
2325
Abstract :
In this paper, we propose a hyperspectral image denoising algorithm with a Spatial-spectral view fusion strategy. The idea is to denoise a noisy hyperspectral 3-D cube using the hyperspectral total variation algorithm, but applied to both the spatial and spectral views. A metric Q-weighted fusion algorithm is then adopted to merge the denoising results of the two views together, so that the denoising result is improved. A number of experiments illustrate that the proposed approach can produce a better denoising result than both the individual spatial and spectral view denoising results.
Keywords :
geophysical image processing; hyperspectral imaging; image denoising; image fusion; Q-weighted fusion algorithm; hyperspectral image denoising; hyperspectral total variation algorithm; noisy hyperspectral 3D cube; spatial-spectral view fusion strategy; Adaptation models; Hyperspectral imaging; Measurement; Noise; Noise reduction; TV; Hyperspectral image denoising; spatial view; spectral view; total variation;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/TGRS.2013.2259245
Filename :
6558828
Link To Document :
بازگشت