Title :
SH waves in piezoelectric semiconductor film
Author :
Jian-jun Liu;Xiao-shan Cao
Author_Institution :
Department of Engineering Mechanics, School of Civil Engineering and Architecture, Xi´an University of Technology, 710048, China
Abstract :
The propagation behavior of SH waves in a transversely isotropic one-carrier piezoelectric semiconductor thin film is investigated. We establish the governing equations of SH waves with respect to the displacement, electrical potential, and perturbation of carrier density based on constitutive equations, the relationship between mechanical displacement and strain components, the relationship between electric field and electric potential, equations of motion, Gauss´s law of electrostatics, and conservation of charge. The boundary conditions in an unelectroded piezoelectric semiconductor include the traction-free condition, electric continuity condition, and perturbation of the carrier density of the surface vanishing condition. An analytical dispersion equation of SH waves for the case of mechanical and electrical boundary conditions is obtained. Numerical results show that the semiconductor character can affect the phase velocity and wave attenuation phenomenon.
Keywords :
"Electric fields","Attenuation","Dispersion","Acoustic waves","Semiconductor films","Charge carrier density"
Conference_Titel :
Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), 2015 Symposium on
DOI :
10.1109/SPAWDA.2015.7364503